xenon | Stable | Atomic mass* | Mole | |-------------------|--------------|-----------| | isotope | | fraction | | ¹²⁴ Xe | 123.905 893 | 0.000 953 | | ¹²⁶ Xe | 125.904 274 | 0.000 890 | | ¹²⁸ Xe | 127.903 5313 | 0.019 10 | | ¹²⁹ Xe | 128.904 7794 | 0.2640 | | ¹³⁰ Xe | 129.903 508 | 0.040 71 | | ¹³¹ Xe | 130.905 0824 | 0.212 33 | | ¹³² Xe | 131.904 1535 | 0.269 087 | | ¹³⁴ Xe | 133.905 3945 | 0.104 36 | | ¹³⁶ Xe | 135.907 219 | 0.088 58 | ^{*} Atomic mass given in unified atomic mass units, u. Half-life of redioactive isotope Less than 1 second Important applications of stable and/or radioactive isotopes Isotopes in geochronology 1) The many stable isotopes of Xe hold many different clues about the formation of the elements, solar system history, and Earth processes. One of the more interesting applications is as a detector of "extinct" radionuclides. Some ¹²⁹Xe is radiogenic, having been produced by radioactive decay of ¹²⁹I (half-life = 1.6 x 10⁷ a). Because the half-life of ¹²⁹I is much smaller than the age of the Earth, primordial ¹²⁹I (i.e., that which was present at the beginning of Earth history) is essentially gone, having decayed to ¹²⁹Xe over geologic time. This means that radiogenic ¹²⁹Xe could be a marker of the former existence of the "extinct" isotope ¹²⁹I. - 2) Although much of this radiogenic ¹²⁹Xe has been dissipated or diluted with much larger amounts of other planetary Xe in the Earth and its atmosphere, it can still be found in some relatively isolated occurrences. Anomalously high ratios of ¹²⁹Xe to other Xe isotopes in some natural gases and volcanic rocks have been interpreted as decay products of "extinct" primordial ¹²⁹I. This would imply that parts of the Earth escaped being mixed or degassed in the time since very early in Earth history, a short time after condensation from the solar disk. - 3) Moreover, because primordial ¹²⁹I was produced largely in supernovae, detection of radiogenic ¹²⁹Xe in meteorites and terrestrial samples also implies that the time elapsed between ¹²⁹I supernova nucleosynthesis and planetary condensation was short compared to the subsequent history of the solar system. - 4) The many isotopes and reaction mechanism of Xe have contributed numerous insights into Earth processes, through the study of "xenology". ## Isotopes in forensics - 1) Radiogenic Xe isotopes are produced by nuclear reactions in atomic bombs and nuclear reactors. For example ¹³¹Xe, ¹³³Xe, and ¹³⁵Xe are some of the fission products of ²³⁵U and ²³⁹Pu. - 2) Measurements of Xe isotopes (e.g., in the atmosphere or the subsurface) can be used to identify contamination from these sources, for example, to detect faults in nuclear reactors or to monitor compliance with nuclear test bans (Figure 1). Figure 1: Monitoring of ¹³³Xe in air Freiburg, Germany from 1986 to 1999. The record indicates persistent low levels of anthropogenic ¹³³Xe generally attributable to normal acceptable releases from nuclear power plants, with variability related in part to multiple sources and changing wind patterns. A major spike occurred in 1986 during the Chernobyl reactor accident in Russia. The half life of ¹³³Xe (5.2 d) is long enough for it to escape from its source and be distributed in air near the source, but short enough that the long-term background levels are very low. Records such as this also could detect undocumented nuclear explosions. ## Isotopes in medicine - 1) Xe isotopes are used in various ways to investigate the movement of inhaled gases in the lungs and other parts of the body. Inhaled radioactive isotopes ¹²⁷Xe and ¹³³Xe can be tracked throughout the body by externally monitoring their decay products, to assess the efficiency of uptake and transport of oxygen by the blood. - 2) Hyperpolarized ¹²⁹Xe is used in magnetic resonance imaging of gas flows in the lungs. Figure 2: Xenon ventilation imaging has progressed greatly since first being used in 1998. One of the first ¹²⁹Xe images is (A) and by improving polarization, gas delivery technology, and MR acquisition strategies the image quality has improved. The current standard ¹²⁹Xe image is (D) and further improvement in image quality is expected through continued progress in improving polarization, gas delivery technology, and MR acquisition strategies. 3) ¹²⁴Xe is used in the production of radioisotopes ¹²³I and ¹²⁵I, which are used in diagnostic procedures and cancer treatment, respectively.